AERONET-OC “Galata Platform” in the Black Sea in Bulgaria waters. The site is characterized by optically complex waters moderataly dominated by sediments. AERONET-OC is the Ocean Color component of the Aerosol Robotic Network (AERONET, Holben et al. 1998), a federated instrument network and data archive, managed by the Goddard Space Flight Center (GSFC) of the U.S. National Aeronautics and Space Administration (NASA) and specifically conceived to support aerosol investigations through standardized instruments and methods (Holben et al. 2001). Similar to AERONET, AERONET-OC (Zibordi et al. 2009) relies on NASA’s commitment for field instruments calibration, data processing and archiving. These activities are complemented by independent actions focused on establishing and maintaining CE-318 modified sun-photometers at coastal sites of interest for individual investigators or research institutions. These modified sun-photometers, called SeaWiFS Photometer Revision for Incident Surface Measurements (SeaPRISM), have the capability of performing autonomous above-water radiometric measurements in addition to usual atmospheric measurements (Zibordi et al. 2004).
Key features of AERONET-OC are: i. near-real time data collection and processing (i.e., within a few hours); ii. use of standardized instruments, calibration procedure and data processing; iii. open access to measurements and products through a specified data policy. The primary data product of AERONET-OC is Lwn at wavelengths suitable for satellite ocean color applications. An additional product is the aerosol optical thickness, complemented by phase function, particle size distribution and single scattering albedo of aerosols, all having potential importance to assess the performance of the atmospheric correction process applied to satellite data.
AERONET-OC sites are located in coastal regions by taking advantage of available and accessible offshore grounded structures. Deployment requirements for the collection of measurements suitable for ocean color validation activities are summarized as follows: i. fixed deployment platforms allowing for measurement of the direct sun irradiance through accurate sun-tracking; ii. superstructures with height and shape minimizing contamination of the measuring system by sea-spray; and iii. deployment positions allowing unobstructed sea observations at the maximum possible distance from the superstructure at the time of satellite overpass. Recalling that the minimization of superstructure perturbations in above-water radiometric measurements requires observations of the sea surface at distances at least equal to the superstructure height, the measurement systems are generally deployed from dedicated extensions of the main structure.
Build on reliable and scalable technology
FAQ
Frequently Asked Questions
Some basic informations about API Store ®.
Operation and development of APIs are currently fully funded by company Apitalks and its usage is for free.
Yes, you can.
All important information such as time of last update, license and other information are in response of each API call.
In case of major update that would not be compatible with previous version of API, we keep for 30 days both versions so you will have enough time to transfer to new version. We will inform you about the changes in advance by e-mail.