METOP GOME-2 - Cloud Top Pressure (CTP) - Global

Open data API in a single place

Provided by Bundesamt für Kartographie und Geodäsie

Get early access to METOP GOME-2 - Cloud Top Pressure (CTP) - Global API!

Let us know and we will figure it out for you.

Dataset information

Catalog
Country of origin
Updated
Created
Available languages
German
Keywords
AC-SAF, urn:eop:DLR:EOWEB:GOME.TC.AGG, Cloud Top Pressure, MetOp-C, MetOp-B, GOME-2, MetOp-A, CTP, FEDEO, GOME.TC.AGG
Quality scoring
175

Dataset description

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks) are used for retrieving the following geophysical cloud properties from GOME and GOME-2 data: cloud fraction (cloud cover), cloud-top pressure (cloud-top height), and cloud optical thickness (cloud-top albedo). OCRA is an optical sensor cloud detection algorithm that uses the PMD devices on GOME / GOME-2 to deliver cloud fractions for GOME / GOME-2 scenes. ROCINN takes the OCRA cloud fraction as input and uses a neural network training scheme to invert GOME / GOME-2 reflectivities in and around the O2-A band. VLIDORT [Spurr (2006)] templates of reflectances based on full polarization scattering of light are used to train the neural network. ROCINN retrieves cloud-top pressure and cloud-top albedo. The cloud-top pressure for GOME scenes is derived from the cloud-top height provided by ROCINN and an appropriate pressure profile. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
Build on reliable and scalable technology
Revolgy LogoAmazon Web Services LogoGoogle Cloud Logo
FAQ

Frequently Asked Questions

Some basic informations about API Store ®.

Operation and development of APIs are currently fully funded by company Apitalks and its usage is for free.
Yes, you can.
All important information such as time of last update, license and other information are in response of each API call.
In case of major update that would not be compatible with previous version of API, we keep for 30 days both versions so you will have enough time to transfer to new version. We will inform you about the changes in advance by e-mail.

Didn't find the API you need?

Let us know and we will figure it out for you.

API Store provides access to European Open Data via scalable and reliable REST API interface.
Copyright © 2024. Made with ♥ by Apitalks