A possible effect of a carbon dioxide leak from an industrial sub-sea floor storage facility, utilised for Carbon Capture and Storage, is that escaping carbon dioxide gas will dissolve in sediment pore waters and reduce their pH. To quantify the scale and duration of such an impact, a novel, field scale experiment was conducted, whereby carbon dioxide gas was injected into unconsolidated sub-sea floor sediments for a sustained period of 37 days. During this time pore water pH in shallow sediment (5 mm depth) above the leak dropped >0.8 unit, relative to a reference zone that was unaffected by the carbon dioxide. After the gas release was stopped, the pore water pH returned to normal background values within a three-week recovery period. Further, the total mass of carbon dioxide dissolved within the sediment pore fluids above the release zone was modelled by the difference in DIC between the reference and release zones. Results showed that between 14 and 63% of the carbon dioxide released during the experiment could remain in the dissolved phase within the sediment pore water. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Peter Taylor et. al. Doi:10.1016/j.ijggc.2014.09.006.
Build on reliable and scalable technology
FAQ
Frequently Asked Questions
Some basic informations about API Store ®.
Operation and development of APIs are currently fully funded by company Apitalks and its usage is for free.
Yes, you can.
All important information such as time of last update, license and other information are in response of each API call.
In case of major update that would not be compatible with previous version of API, we keep for 30 days both versions so you will have enough time to transfer to new version. We will inform you about the changes in advance by e-mail.