Sweet potato leaf stomatal conductance, leaf chlorophyll content, and tuber yield after exposure to three ozone concentrations in heated glasshouses, UK, 2019-2021

Open data API in a single place

Provided by Government Digital Service

Get early access to Sweet potato leaf stomatal conductance, leaf chlorophyll content, and tuber yield after exposure to three ozone concentrations in heated glasshouses, UK, 2019-2021 API!

Let us know and we will figure it out for you.

Dataset information

Country of origin
Updated
Created
Available languages
English
Keywords
Agricultural and Aquaculture Facilities, yield, stomatal conductance, Tropospheric ozone, chlorophyll content, Ipomoea batatas
Quality scoring
130

Dataset description

The data comprises physiological and yield measurements from an ozone (O3) exposure experiment, during which three varieties of sweet potato (Ipomoea batatas) were exposed to Low, Medium and High O3 treatments using heated dome shaped glasshouses (solardomes). The Erato orange variety was exposed to the three treatments from June to October 2019 and the Murasaki variety from June to October 2021. The Beauregard variety was grown on two occasions, with treatments from August to October 2020, and June to October 2021. Measurements were taken of leaf stomatal conductance, leaf chlorophyll content index as well as the harvest (fresh) weight of tubers. All measurements were made by the corresponding author. The experiments were carried out in the UKCEH Bangor Air Pollution Facility. This work was carried out as part of the UK Centre for Ecology & Hydrology Long-Term Science Official Development Assistance ‘SUNRISE’ project, NEC06476. Stomatal conductance was found to be significantly reduced in the elevated ozone treatments. Yield for the Erato orange and Murasaki varieties was reduced by ~40% and ~50% (Medium and High, respectively, vs Low) whereas Beauregard yield (2021) was reduced by 58% in both (the tubers for the Beauregard plants grown in 2020 were not fully formed). Sweet potato is a staple food crop grown in locations deemed to be at risk from O3 pollution (e.g. Sub-Saharan Africa), and this dataset adds much needed stomatal conductance and yield data of sweet potato grown under different O3 exposure conditions. This can be used to improve model predictions of O3 impacts on sweet potato, along with associated risk assessments. Full details about this dataset can be found at https://doi.org/10.5285/66e73c38-5b85-44a1-818a-52189bdcffda
Build on reliable and scalable technology
Revolgy LogoAmazon Web Services LogoGoogle Cloud Logo
FAQ

Frequently Asked Questions

Some basic informations about API Store ®.

Operation and development of APIs are currently fully funded by company Apitalks and its usage is for free.
Yes, you can.
All important information such as time of last update, license and other information are in response of each API call.
In case of major update that would not be compatible with previous version of API, we keep for 30 days both versions so you will have enough time to transfer to new version. We will inform you about the changes in advance by e-mail.

Didn't find the API you need?

Let us know and we will figure it out for you.

API Store provides access to European Open Data via scalable and reliable REST API interface.
Copyright © 2025. Made with ♥ by Apitalks